T1059 - Command and Scripting Interpreter#

Adversaries may abuse command and script interpreters to execute commands, scripts, or binaries. These interfaces and languages provide ways of interacting with computer systems and are a common feature across many different platforms. Most systems come with some built-in command-line interface and scripting capabilities, for example, macOS and Linux distributions include some flavor of Unix Shell while Windows installations include the Windows Command Shell and PowerShell.

There are also cross-platform interpreters such as Python, as well as those commonly associated with client applications such as JavaScript and Visual Basic.

Adversaries may abuse these technologies in various ways as a means of executing arbitrary commands. Commands and scripts can be embedded in Initial Access payloads delivered to victims as lure documents or as secondary payloads downloaded from an existing C2. Adversaries may also execute commands through interactive terminals/shells, as well as utilize various Remote Services in order to achieve remote Execution.(Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance - Command History)(Citation: Remote Shell Execution in Python)

Atomic Tests:#

Currently, no tests are available for this technique.

Detection#

Command-line and scripting activities can be captured through proper logging of process execution with command-line arguments. This information can be useful in gaining additional insight to adversaries’ actions through how they use native processes or custom tools. Also monitor for loading of modules associated with specific languages.

If scripting is restricted for normal users, then any attempt to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent.

Scripts are likely to perform actions with various effects on a system that may generate events, depending on the types of monitoring used. Monitor processes and command-line arguments for script execution and subsequent behavior. Actions may be related to network and system information discovery, collection, or other scriptable post-compromise behaviors and could be used as indicators of detection leading back to the source script.

Shield Active Defense#

Software Manipulation#

Make changes to a system’s software properties and functions to achieve a desired effect.

Software Manipulation allows a defender to alter or replace elements of the operating system, file system, or any other software installed and executed on a system.

Opportunity#

There is an opportunity for the defender to observe the adversary and control what they can see, what effects they can have, and/or what data they can access.

Use Case#

A defender can manipulate the output of system commands issued to alter information the adversary might use during their activity.

Procedures#

Hook the Win32 Sleep() function so that it always performs a Sleep(1) instead of the intended duration. This can increase the speed at which dynamic analysis can be performed when a normal malicious file sleeps for long periods before attempting additional capabilities. Hook the Win32 NetUserChangePassword() and modify it such that the new password is different from the one provided. The data passed into the function is encrypted along with the modified new password, then logged so a defender can get alerted about the change as well as decrypt the new password for use. Alter the output of an adversary’s profiling commands to make newly-built systems look like the operating system was installed months earlier. Alter the output of adversary recon commands to not show important assets, such as a file server containing sensitive data.